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Abstract. An analysis of relative orientations of objects (‘orientation’ in the sense that an 
object is brought from one orientation to another by means of some rotation) leads to a 
geometrical definition of spinors and to the relationship between spinors and vectors. The 
spinor notation obtained is in some respects more basic than the conventional, complex 
notation, which contains some ambiguity. It is shown that spinors can be described by 
additive, vector-like entities in the real three-dimensional space ( R 3 ) .  These entities are 
linear in the spinor components and transform under rotations in a simple manner (different 
from that of vectors). Each ordinary, complex component of the spinor can be obtained by a 
projection on a complex plane embedded in R 3 .  Spinors-in all their aspects including the 
sign-acquire a clear and natural geometrical significance in this approach. Furthermore, it 
unifies in a geometrical manner the SU(2) transformations of spinors, the connection 
between spinors and vectors and the recent spinor visualisation model of Hellsten. The 
latter is also derived here in a simple manner. 

1. Introduction 

Spinors-the two-component complex quantities associated with spin-; states-have 
often been regarded as abstract entities that are only indirectly connected with the 
geometry of the Euclidean three-dimensional real space ( R 3 ) .  Since vectors can be 
expressed as quadratic functions of spinors, they have been used as the link between 
spinors and R 3 ,  as, for example, in the spinor definition of Cartan (1966, p 41). This 
view gives no interpretation of the sign of the spinor, which is lost in the quadratic 
expression, and the connection with R 3  is only indirect. The linear nature of the spinors 
is hidden; for example, to start with the vectors associated with two spinors and form the 
vectors that correspond to the sum of the spinors is obviously complicated. This is even 
impossible to carry through unless the signs of the spinors are determined by some 
non-vectorial quantities. Other approaches, such as the description of spinor geometry 
by Veblen (1933) and the nullflag interpretation of spinors by Penrose (1968), are also 
of this kind. 

Conventionally, the spinor space is a linear, complex two-space ( C 2 ) .  Sometimes 
(e.g. Gel’fand et a1 1963), the spinors are regarded merely as the quantities in C 2  that 
are transformed under rotations by matrices in SU(2)-the simplest double-valued 
representation of the rotation group. Then, the linear nature of the spinors is explicit by 
definition. However, the connection between the geometries of C 2  and R 3  remains 
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unclear, and the transformation of the spinor components in C 2  under rotations in R 3  is 
quite involved. 

Although it is then tempting to regard spinors merely as abstract entities-a view 
that certainly has had a great impact on the theory of quantum mechanics-this is not 
necessary and does not give a fair picture of the spinors. Recently, H Hellsten (1979) 
has given a new and concrete way of looking at spinors in R 3  that does not suffer from 
the deficiencies contained in the quadratic relation between spinors and vectors. He has 
also generalised it to the Minkowski space and included twistors (Hellsten 1980a, b). 
Hellsten’s model in R 3  is treated in some detail in 0 5 of this work. 

In this paper we shall give a complementary picture of spinors in R3. We shall 
obtain the notion of a spinor and the relationship between spinors and vectors from an 
analysis of relative orientations of objects. Here, the concept of orientation is used in 
the sense that an object can be brought from one arbitrary orientation to another by 
means of a rigid rotation or a reversal (rotation + inversion through the origin). The 
concept should become clear from what follows (the triad formulation, 0 3.2, supplies a 
more strict definition). Note that our meaning of ‘orientation’ is different from that 
used for example in differential geometry. We shall assume that the objects used are 
non-symmetrical (e.g. a cube with distinctly marked faces or a triplet of distinguishable 
vectors which do not lie in one plane, ‘orientable objects’) so that unique orientations 
can be defined from them. 

Consider a collection of equal, superimposable objects which have a fixed point 
(origin) in common, such that all objects can be brought to coincide by means of 
different rotations (for simplicity we restrict ourselves to rotations here, but what is said 
below is true for reversals as well). In the following we shall make use of a slight 
abstraction. Let us assign an orientation to each object (they are distinct for non- 
coinciding objects) and talk about transformations of orientations instead of change in 
orientations of the objects under rotations. Thus two distinct orientations are related by 
some rotation, that would bring the first one to the second if the latter were kept fixed. 
The rotation is uniquely defined up to a rotation through 2777 (T some integer), i.e. it 
specifies a unique axis of rotation and an angle of rotation (modulo 277) measured in 
some definite sense around the axis. The perpendicular plane that contains the origin 
will be called the plane of rotation. We shall conventionally label a rotation by the 
parameters 6 (unit normal to the plane of rotation) and cp (angle of rotation measured in 
the positive sense around 6). 

From a physical point of view, a common rotation of all objects has no meaning, and 
only relative transformations are meaningful. Thus we need some reference objects 
which are exempt from the transformation (interpreted in the active sense), while 
everything else is changed. As regards orientations, we take some reference orientation 
(52,) to which all orientations are referred. A change in SZ, equals a passive rotation 
which leaves the other orientations unaffected. However, the relation (some rotation) 
between a certain, arbitrary orientation (52) and 52, becomes changed. Obviously, the 
same change in the relation occurs during the corresponding active transformation 
when all orientations except 52, are changed in the reverse manner. The active view of 
the transformations will be held in the following unless otherwise stated, and the values 
of the rotation parameters will normally be chosen in the active sense. 

From the relation between an orientation (52) and the reference orientation (a,), we 
shall define the concept of a spinor associated with 52, in 0 2. This association will 
express the invariant nature of the spinor itself (cf vectors under passive rotations), 
while its components, which are obtained from the relation, depend on the reference 
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orientation chosen. In § 3 we shall see how the relation between two orientations, none 
of which equals R,, defines a vector, which fact gives rise to a direct link between spinors 
and vectors. Furthermore, the relationship between spinors and triads (there defined) is 
derived, and the effect of spatial inversions is investigated. Section 4 is devoted to spinor 
visualisations, and finally in § 5 the connection with the spinor visualisation model of 
Hellsten (1979) is given. 

2. The relation between orientations and spinors 

Let us first choose an arbitrary, but fixed, reference orientation R, in R3 (it can be 
thought to be associated in some way with the frame of reference chosen). Consider 
some orientation R that is related to R, by a rotation (inversions will be considered in 
§ 3.4). Let the parameters (6, -cp) define a rotation that would bring 0 to coincide with 
R,. For simplicity-but somewhat inconsequently-we shall in the following say that 
the rotation (6, c p )  would rotate R, to R. If we perform an active rotation through J, 
around the axis given by A, R is transformed to, say, 0’ while 0, is fixed. The new 
orientation R’ is related to CL, by means of a new rotation (h‘, cp’), which would rotate R, 
to 0‘. Obviously, (6’, cp’) defiaes the rotation that is the combination of the rotation 
(6, cp) followed by (h,J,): 

(2.1) 

The value of (6’, cp’) is uniquely determined by (6, cp) if its change is followed 
continuously when J, is varied from 0 to the final value (this will always be required in 
the following). 

The combination of rotations is easily performed by means of a spherical triangle as 
shown in figure 1. The corners of the triangle lie on the rotation axes, while the angles 
equal half the rotation angles. This is a direct consequence of the fact that any rotation 
can be performed by means of consecutive reflections in two planes that intersect at the 
rotation axis and form an angle of half the rotation angle to each other. The 
construction of a combination of such reflections-and hence of rotations-is shown 
geometrically by Misner et a1 (1973, pp 1137-9) (cf the figure caption of our figure 1). 

From figure 1 we see that the resultant rotation axis n’ moves in a plane (A) when $ is 
varied (A is kept fixed), i.e. 6’ describes a circle of unit radius in A. Note that A is 
determined by (6, cp) and A, A = A(h ; 6, 40); it is the (6, &)plane rotated through -q /2  
around 6 (the case that $I and 6 are parallel is trivial). 

This construction gives the transformation (6, cp) + (A’, cp’) under the active rotation 
(&, 4). It is easy to see that a rotation through 27r (9 = 27r) gives the result 6’ = -6 
since $12 = IT is used, and a further rotation through  IT is necessary in order to come 
back to the original 6. The circular motion of 6’ under the rotation is not simple, since 
the angular velocity of 6’ is non-uniform when J, is increased at an even rate (unless h is 
perpendicular to the plane of the circle). However, it is possible to modify 6’ slightly 
such that its motion can be decomposed into simpler motions, as we shall see soon. 

Figure 2 gives a different view of figure 1 with the (6, A) and (6’, h) planes and the 
tangent vectors h, k, h’, 5‘, f and 7 of the spherical triangle shown. The latter two 

- - -  
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A 

Figure 1. Composition of rotations illustrated by a spherical triangle. Its sides are great 
circles of the sphere, and 6, A and 6’ lie on the intersections between the planes of the 
circles. The rotation (6’, cp’ )  is the result of the rotation ( f i ,  c p )  followed by (A, $). It can also 
be seen as the result of consecutive reflections (see text) in the planes (6 2’) and (6, A )  (i.e. 
rotation (6, c p ) )  followed by (6, A )  and (6’, A )  (i.e. rotation (A, $)). Since the middle two 
reflections cancel, the resultant reflection planes are (6, f i ’ )  and (E‘, A )  (i.e. rotation (Z‘, c p ’ ) ) .  

i 

0 -  

Figure 2. A detailed view of the illustration in figure 1. The tangent vectors of th_e spherical 
triangle are shown. t? and lie in the (6, f i ’ )  plane (A), while E and f (E’ and f’) lie in the 
plane (6, A )  ((Z’, A)). The angles between the tangent vectors are also shown (cf figurel). 

vectors are chosen such that they constitute the projections of A and A ‘  on a plane 
perpendicular to h. We take 

r=  A - ( A  
h = A’-  (2. &’)A,  

= h - ( A  - & ) A ,  

p = 6’- (2’. &)&, 

h‘ = -[A - (6’. G ) $ ] ,  
z‘ = & - (2’. &)A’.  

- - 
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(2.4) 

From equation (2.2) it follows that (L  x k) - n* = (i‘ x F’) * n* ’ .  Inserting equation (2.4) 
and the corresponding primed relation, we obtain 

I fl sin 1cp = 171 sinzcp’. (2.5) 1 

since the projections of N and 15’ on a plane perpendicular to h equal P and P’ 
respectively, which have the same length. Furthermore, the angle between F‘ and P 
equals +/2 (cf 7 and f in  figure 2). The transformation N + under the active rotation 
(h, $) accordingly becomes a simple rotation through $/2 when projected on that 
plane. Since 15’ and 6’ are parallel (or antiparallel), the transformation of 15’ also takes 
place in the plane A(&; it, 9). Obviously, 15’ moves in an elliptical orbit when + is 
varied (see figure 3) and its motion is simple to follow from the circular, uniform motion 
of the projection P’. 

Define I? from 

E = $2 x P = h x N, 

F’ = cos (+$IF + sin(++)B. 

(2.7) 

Since I,??\ = we obviously have (figure 3) 

(2.8) 
Define d in the plane A from the requirement that its projection equals I? (figure 3). 

Figure 3. The orbit of the ‘vector’h” (fi transformed under the rotation (&, 3))  is obtained 
as the intersection between a cylindrical surface centred at $I and the tilted plane A. The 
projections on a plane perpendicular to & are shown to the right. P and P‘ are orthogonal 
to ,E and 8’ respectively, which are the the projections of d and d’. 
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From the condition that 
that 

moves in the (N, e) plane and from equation (2.8) it follows 

(2.9) N' = cos(i4)N + sin(i4)G. 

Analogously, e' is defined in A from E' = A x I?'. It is simple to see that G' is obtained 
from 15' by increasing 412 with 1 ~ 1 2 ~  i.e. equation (2.9) yields 

(2.10) 

Equations (2.9)-(2.10) can be used to investigate the motion of projected on A 
(while equation (2.8) gave the perpendicular components of the motion). Let us define 
Y and Y '  to be the projections of 

G' = -sin(++)N + cos($$)G. 

and G' respectively on A :  

u = G . A ,  V I = @ . & *  (2.1 1) 

(2.12) 

Thus, the two-vector D' that has the components (v', 15'. A )  performs a circular motion 
in an imagined plane, where the initial 
we can let A define one axis of the plane (i.e. D' * h = N f  A )  and choose the v axis in 
any direction perpendicular to A. The situation is depicted in figure 4. 

Equations (2.9142.10) give 

N'* A = cos(i4)N A + sin(+4)v7 v' = -sin&)N * A + c o s ( i ~ ) v .  

is defined by (Y, N -  A). To illustrate this in R 

circle (1 I 

m G X I S  

circie (21 c 1 rcle (1 i 

m 0x1s 

& 
\I OXIS 

Figure 4. The transformation of N' and v' under the rotation [ f i ,  #). A side and a top view 
of the elliptic orbit of I?' are shown. The right circle (1) is a projection of the ellipse. The 
projections of N : F' (see figure 3) and N'* h are also shown. The latter quantity is also the 
projection of 6' on the m axis. The projection of D' on the perpendicular axis equals V I .  

The two-vector 6' moves with a rotation angle #/2 in the circular orbit (2) shown. The 
plane of this circle (2) is seen from the side in the upper figure (i.e. the v axis lies in A, the 
plane of the ellipse) but can also be rotated together with and 6' around 6 to an arbitrary 
angle. 
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Since v plays a crucial role in equations (2.12), the proper quantity to investigate 
further is (R, v )  which contains four components. In the Appendix it is shown that 
v = cos(cp/2), and hence we have 

(N, Y )  = ( v i  sin(icp), cos(icp)). (2.13) 

We have seen (equations (2.8) and (2.12)) how its transformation under active rotations 
(A, (I,) can be decomposed by projection into two simple rotations through 4/2, one (F’)  
around A and one (D’) in an arbitrary plane containing A. Thus, the transformation 
rule is determined entirely by A and (I,, and is the same for all (N, v). It also follows that 
it is independent of the reference orientation. Furthermore, the sum of two ‘vectors’ (the 
quotation marks indicate that they do not transform like ordinary vectors) that rotate 
through $/2 also rotates through (I,/2, so the transformation is linear. Note that the 
transformation of an ordinary vector and that of the ‘vector’ N differ in only two ways. 
The angles of rotation around A are (I, and +/2 respectively, and the projection of a 
vector on A is constant while that of is the projection of another circular motion. 

The quantity (N, Y )  is, by definition, a spinor (we shall see below that this definition is 
equivalent to the conventional one, but cf also 5 3.4). Its transformation formula is 
contained in equations (2.9) and (2.12). From the definition of C? and from equations 
(2.7) and (2.11) it follows that 

d = A XN+ vriz (2.14) 

and hence we obtain 

N r  = cos(i(~,)N + sin(i+)A x N +sin&)vt+i, 
(2.15) 

Note that N 2 +  v 2  = ( N ’ ) 2 +  ( v ’ ) ~  = 1. It is simple to check that equation (2.15) remains 
valid when A is parallel to 6. Then the ellipse degenerates to a line along vi .  

To see the relationship to the conventional way of writing a spinor, let us express N 

V I  = cos(i(~,)v -sin(i+)(N* A). 

in its components fi = 

N, +iv =(:I) =(N;+iNy)’ 

Note that ( U  I U )  = N 2  + v2.  In this notation 

U ‘  = & ( + ) U  

where 

the compact notation 

(2.16) 

equation (2.15) can be written 

(2.17) 

6 = i6 are the conventional Pauli matrices, and equation (2.17) is the common spinor 
transformation formula (Cartan 1966, pp 46-7 Misner eta1 1973, pp 1137,1148). 1 ,  i, 
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j and k satisfy 

i2  = j 2 =  k2  = ijk = -1 (2.18) 

and are accordingly quaternion basis elements, a well known fact. 

(using equation (2.13)) 
The spinor transformation can be written somewhat differently if we introduce 

I?(#, v ) = B & p ) = v l + N * b  (2.19) 

i.e. the spinor written as a quaternion. Equation (2.17)-as well as equation (2.15)-is 
equivalent to 

B (P, v‘) = B& ($)I? (N, v )  * (2.20) 

This expresses the composition of rotations (2.1)-which was our point of departure- 
by means of spinor transformation matrices. Equation (2.13) merely introduces the 
well known Euler-Olinde-Rodrigues parameters of the rotation. The relation between 
the C2 and the quaternion notations (equations (2.16) and (2.19)) of the spinor is 

(2.21) 

So far, only normed spinors have been considered. Obviously, a general spinor is 
obtained by multiplying (N, v) by a positive scale factor. Since this generalisation is 
very simple to perform, we shall for simplicity assume that the spinors are normed in the 
following unless otherwise stated. 

As will be evident at several places in what follows, the four-component notation 

(N, v )  of a spinor is in many ways more basic than the complex one . In fact, the i 3 
complex notation is not necessary in order to write a spinor as a quaternion and to 
obtain equations (2.17)-(2.20). If the quaternion basis elements above are substituted 
by the 4 x 4 real matrices (cf the complex &matrices) 

1 0  0 -1 
where 1 = ( 1) and j = ( o), and if we use the real column matrix 

of U, equations (2.17)-(2.20) remain valid. It is easy to check that equation (2.17) is 
then identical to equation (2.15) written in matrix form. 

To end this section, we shall make a comment on the sign indeterminicity of the 
spinors. The rotation ( f i ,  c p )  that relates the orientation s2 and the reference orientation 
Sz, is uniquely determined up to a rotation angle of 27r77 (77 any integer). From equation 
(2.13) we see that this leads to two possible signs of the spinor associated with s2. 
Furthermore, from equation (2.15) it follows that an active rotation through 27r around 
t4 changes the sign of (fl, v), and also of 2, as we saw earlier from figure 1 (the last 
statement is true unless t4 is parallel to 2, the only case where sin(cp/2) changes sign and 
where f i  is constant). However, this rotation transforms the plane of rotation associated 
with ( f i ,  c p )  into itself, only its normal has a reversed sign. 
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The rotation (A ,  cp) would bring a point P to another point Q on the unit circle in that 
plane. Let us now start again and take any circle with two arbitrary points P and Q 
specified. It defines two rotations with 0 s cp s   IT that would bring P to Q along the 
circle (the rotation axis is perpendicular to the plane of the circle). The rotations differ 
in sign of n* (i.e. in rotation direction) and define the spinors *(I?, v). Thus the initial 
sign indeterminicity of the spinor can be expressed as the geometrical property of R 3 :  
there exist two unit normals defining the very same plane. By choosing one normal of the 
plane (i.e. a sign of the normal), and hence one sign of the spinor, we have removed the 
indeterminicity, since the choice can be followed by continuity during rotations. 

3. Relations between spinors and vectors 

3.1. Orientations, spinors and vectors 

Let us regard two distinct orientations Rl and RZ related in the usual manner to the 
reference orientation R, by the rotations ( A I ,  cpl) and (n *2 ,cp2 )  respectively. From 
equation (2.13) we obtain the spinors (N1, VI) and (Nz, VZ) which are associated with Rl 
and R2 (each associated spinor is unique up to a sign). The two orientations also 
determine a rotation ( I ,  x) (x determined up to 21~77, q any integer) that would bring 
to Rz if the latter were kept fixed. This rotation also relates the two spinors (provided 
the multiple of 2 7  is chosen properly) 

B", v2) = Bf(X)B(Nl, v1) (3.1) 

(cf equation 2.20)). 
Let us now, for simplicity, regard the effect of a passive rotation (A, 4) .  It rotates 

a,, while R1 and R2 are invariant. Thus the rotation axis (0 and angle (x) are also 
unchanged, which means that f transforms like a vector and x like a scalar under 
rotations (passive or active). Under the active rotation (&, $), the direction of f is 

transformed to that of, say, I $ .  The transformation of the vector components f= 1, 

can be obtained from equation (3.1), which we write as 
i:'l 

B ( N ~ ,  v z ) ~ - ' ( N ~ ,  v l )  = ~ i ( x )  = cos(tx)l  +sin(lX)f*b: 

BP(X) = BA($)Bi(X)BL(IC/) (3.3) 

(3.2) 

Using the spinor transformation (2.20), we obtain 

where the facts that x is a scalar and B-' = B' are utilised. Thus we have for any vector 
5 

(3.4) 5' * b = B& ($)( v * 6)BL (4)  
which is the usual transformation formula of a vector written as a quaternion (Cartan 

The vector and the scalar are related by equation (3.2) to the spinors. Using 
equations (2.18)-(2.19), we obtain from the coefficients of b and 1 in equation (3.2) (cf 
equation (2.15)) 

1966, pp 45-6). 

is in  4x = NI x N2 + vlN2 - vzNl ,  cos& =N1.Nz+v1v2. (3.5) 
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Hence we may define a scalar multiplication 

(Nl,  v1) ’ (N2, v2) = Nl .N2 + v1 v2 

(NI, V I )  x (N2, v2) = N1 x N2 + v1N2 - V * N l  

(3.6) 

and a vector multiplication 

(3.7) 

for spinors. Let us introduce the notation U = (Z?, v), and turn to general (not normed) 
spinors. We accordingly have the spinor norm 

IJUll= ( U *  up2 (3.8) 

U1’ U2 = l l ~ l l l l l U 2 l l  COS(lX), (3.9) 

The geometrical interpretation of these formulae is simple as regards the connection 
between the orientations n1 and n2 associated with the normed spinors and (t x) (it 
follows from the construction above). Note that the same f is determined from several 
pairs of orientations. The relation between ( A l ,  PI),  (62, ( p 2 )  and ([ x) is given 
geometrically by a spherical triangle as in figure 1, which follows from a comparison of 
equations (3.1) and (2.20). 

For spinors written in the usual form (2.16) as complex two-component entities, 
another-but related-form of the relation between spinors and vectors is commonly 
used. The matrix u1u; can always be decomposed, 

u l u :  = Vl+i i j*6 ;  (3.10) 

where in general B and V are complex. Under rotations, 5 obviously transforms like a 
vector (equations (3.4)) and V like a scalar. A short calculation gives 

which is equal to the usual one, and the scalar and vector multiplications 

u1 x U, = ~ ~ u ~ ~ ~ ~ ~ u ~ ~ ~  sin(fX)i. 

(3.11) 

If equation (2.16) is inserted in equation (3.10),  astraightforward computation gives the 
real and imaginary parts 

v 2 = o : + v : , + 0 1 = ( B ) .  2 

Re V = i(N1, vl)  (N2,  v2) ,  

Im v = $(NI ,  vl) - (Mi, vh), 
Im 6 =i(Nl, V I )  x (N2,  vz), ( 3 . 1 2 ~ )  

Re B = -+(NI, vl)  x (Nh, vi), (3.12b) 

where (for spinor two) N:  = -N>, NI = N,, N :  = -v and v’ = N,. Written in complex 
form (equation (2 ,16)) ,  this’means that U ;  = iu2. The geometrical interpretation of this 
will be discussed later (see equation (3.22)). Because of these relations it is reasonable 
to think of equation (3.9) as more basic than equation (3.10). 

3.2. The triad formulation 

The relation between spinors, vectors and orientations can be formulated in a powerful, 
unified manner by use of triads. We define a triad to be a triplet of orthogonal vectors of 
equal length and take this length as its norm. A triad is normed if the common length is 
unity. As a starting point we introduce the transformation operator AA((P) for vector 
rotations 

6’ = AA (cp)B. (3.13) 
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When the rotation is active, it relates the different directions of d and 8’ respectively in 

space. If we write the vector components as column vectors d =  U, , AC(cp) is 

generally represented by the matrix 
i‘“l 

(3.14) A A ( cp ) -  - e  Vpri ’d - -1+sincp((n^.6)+(1-~oscp)(n^.6)’ 

where 

0 0  0 -1 0 

U A = [ ;  ; -;I7 “.I; ; 9’1. 
%=I-; ; 1=[; ; ;]. 0 0 1  1 0 0  

Let us now define the unit vectors (, 6 and [ from the basis vectors 2, y^ and z* according 
to 

i=AC(so)x*, ri=A??(cp)Y*, = Ai ( c p ) f .  (3.15) 

Together, they form a normed triad ((, 6,  [) that is rotated through cp around 6 relative 
to the frame of reference (2, y^, 2). Written as column vectors, i, < and [obviously equal 
the columns of the transformation matrix, Ai(cp) = (i, <, [). 

Introducing the Euler-Olinde-Rodrigues parameters (equation (2.13)) in equation 
(3.14) and using N’ + v’ = 1, we can write 

(3.16) 

Thus the components of A are homogeneous quadratic functions of (N, v). Note that 
the orientation of the triad (i, y^, 2)  serves as a reference orientation, and that (N, v )  
according to the definition in 8 2 is a spinor associated with the orientation of (i, 6,  f). In 
this manner we have obtained an explicit expression 

(3.17) 

A(N, v )  = A;(cp) = (N’ + v2)1 + 2v(N * 6) +2(#  * 6)’. 

(i, 6,  f) = (P + v 2 ) 1  +2v(# - 6) + 2(N * 6)’ 

of the relation between spinors and orientations. 
Let us now perform the rotation (&, 4) .  The triad is transformed: 

til, 6’> f, = Ah(4)(l ,  6,  f). (3.18) 

The orientation of the rotated triad is related to that of the frame of reference by means 
of a rotation ( A ’ ,  cp‘): 

(61, <’, f ‘ )  = A,-,(cp’)(x*, 9, 2) = A(#’, v ’ ) l .  

Thus, equation (3.18) equals 

A(N‘, v’) =Ad($)A(N, v )  (3.19) 

which is the analogue of equation (2.20). As before, we require continuity, i.e. 
lim,,o(N’, v’) = (N, v). From equation (3.19) one can again derive equation (2.15) (the 
proof is rather lengthy). 

According to equation (3.17), a normed spinor and a normed triad are associated 
with each other. General spinors are obtained by multiplying the normed spinors by 
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positive scale factors. The triad (.$, f j ,  f) associated with a particular spinor (I?, v )  is 
generally taken to be 

(4, f j , f ~ = ( ~ 2 + Y 2 ) 1 + 2 Y ( I ? . d ) + 2 ( 1 5 . 6 ) 2 .  

It differs from (t, $, I )  by the square of the scale factor. It is evident what is meant by 
equal orientations of two triads with different norm, and hence one may also talk about 
the orientation of ( E  f j ,  f )  relative to that of (2, y*,2). This defines the spinor up to the 
scale factor, which is easily determined from the norm of the triad. 

Obviously, relations between spinors and vectors are obtained by picking out any 
one of the vectors in each triad. As we shall see, one can also obtain these relations from 
equation (3.10) if the spinor U = (N, v )  is written in the complex form (2.16). This gives 
the connection between the triad formulation and the traditional one. 

If we take u1= u2 = U in equation (3.10) (for simplicity, U is assumed to be normed), 
we obtain a real vector that we call 6': 

u u + =  V'l+iE- '*6,  (3.20) 

Since 6' is real, the scalar V' equals its length (equation (3.11)). A direct calculation 
gives 

(3.21) 

The result can be interpreted in terms of equation (3.12). From the definition of the 
vector product, it is obvious that Im 6'= 0. Using equation (3.9), we also find from 
equations (3.21) and (3.12b) that U x U ' =  -l= sin(x/2)[ where ([ x) defin5s a, 
rotation that transforms U to U' (cf equations (3.1) and (3.9)). Thus we can take 1 = b 
and x = -rr (the other choices are equivalent). We already know that in complex 
notation U '  = iu ,  and we obtain 

U '  = Bi(-rr)u = iu. (3.22) 

The primed spinor (N;, v h )  in equation (3.12b) is accordingly obtained from (&, v2) by 
the rotation ( I ,  -T), where is defined by (N2,  4, ie by (&, ( P Z )  inserted in equation 
(3.15). The general relation (3.22) will be proved later (equation (3.30)). 

The components of U can be written U +  = p+ exp(iy+) and U -  = p- exp(iy-) where 
p+, p- are real and positive and y+, y- are real, Then the components of E' obtained 
from equation (3.20) are 

V I ,  = p+p-- Cody- - y+), 0 :  = p+p- sin(y- - Y+), U, = ~ ( p +  - p - ) .  (3.23) 

This form will be useful later. 

I 1 2  2 

As the next step, we introduce the conjugate spinor ( U ' )  belonging to U :  

uc = CU" (3.24) 

where 

It transforms like an ordinary spinor under rotations (this follows from equation (2.17) 
and CB* = BC).  
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If we put u1 = U and u2 = u c  in equation (3.10), we obtain a complex, isotropicvector 

(3.25) 

That the vector is isotropic, i.e. ( u : ' ) ~ +  = 0, is equivalent to the 
statement that its real and imaginary parts constitute two orthogonal vectors of equal 
length. A straightforward calculation shows that 

E".  

( U c ) +  = ~ " 1  + io" 6: 
(u t ' )2  = ( 

A,, + iAx, 

A,, + iA,, 
= $A(N, v)(; +ip)  = i({+ifj). (3.26) 

An analysis of this result in terms of equation (3.12) (cf the derivation of equation 
(3.22)) gives the meaning of the c-conjugation: 

uc  = B+(.rr)u (3.27) 

where f j  is defined by the spinor (equation (3.15)). The standard components of 6'' are 

(3.28) 

In his definition of spinors in three-dimensional space, Cartan (1966, p 41) starts from 
an isotropic vector that equals ({+iij) = -20'' and defines, in principle, a spinor from 
the square root of its +1 and -1 components. To prove that the spinors so defined 
transform linearly under rotations is obviously equivalent to proving in a direct manner 
that the transformation (3.19) is linear in (N, v). Since ( and .;I are sufficient to specify 
the right-handed triad ((, f j ,  E), a definition of a spinor according to equation (2.16) is 
equivalent to Cartan's definition (unless general triads are considered, see § 3.4). 

3.3. Spinor phases and directions, spin 

In our definition of a normed spinor in real form (N, v), we made use only of 
orientations, and no direction in space was preferred. In complex form (equation 
(2.16)), on the other hand, the spinor defines an  associated direction provided its phase 
factor is ignored, i.e. all spinors that differ only in phase define a common direction in 
space. This well known fact can be seen from equation (3.20), where the substitution 
U + exp(iy)u does not change 6' = T [ .  Conversely, 8' defines p+, p- and y -  - y+ by 
equation (3.23), so all spinors with a common [ direction of the associated triad differ 
only in phase. That [ happens to be the associated direction of the spinor depends on 
the definition of the phase factor, i.e. on the definition (2.16) of I* from (N, v). Another 
choice of complex notation for the spinor (N,  v )  may give a different associated 
direction. 

The phase change under a rotation around [ can be derived from equation (3.3) by 
substituting A + A, @ + p, f+ 2 and hence f'+ 2' = [: 

1 *  

mx)" v )  = B(fl, v)B9ix). (3.29) 

Together with equations (2.17) and (2.21) this gives 

~ f ( X ) u  = e-ix'2u (3.30) 

(note that E is defined by U ,  cf equation (3.15) with (A, c p )  of the spinor). If the phase of 
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the spinor changes in time with the phase velocity w ,  the orientation associated with the 
spinor will accordingly rotate around [with the angular velocity 2w (e.g. (and 4 of the 
triad will rotate likewise around f ,  cf Penrose (1968)). The direction of f is the spin-; 
eigendirection of the spinor used in quantum mechanics. This follows from equation 
(3.20), where 6' =;[ and VI= 1: 

(3.31) s,-=;f.a = uu 7 1  -51 

which gives S p  = 
In the general case we can subdivide the set of all orientations (normed spinors) into 

equivalence classes, each of which defines a distinct direction (unit vector) in the 
following manner. Take an arbitrary orientation (l2,) and associate a likewise arbitrary 
direction (0 with it. By performing all possible rotations on Ro and fsimultaneously, all 
orientations are obtained and with each of them (IZ;) a unique direction (f') is 
associated. All orientations with a common associated direction (e.g. f') form an 
equivalence class (L ' )  (note that f '  and - f '  have different classes). The orientations in 
the class L belonging to the original f are obtained from Ro by rotations around I^. 
Obviously, a rotation that takes finto f '  makes a transformation L + L' (no and C l ,  in L 
are transformed into, say, f l b  and fl: respectively in L'). If RI is obtained from RO by the 
rotation ( L  xl), then we obtain fl; by rotating Rb through x1 around f' (cf the derivation 
of equation (3.3)). 

The corresponding equivalence classes of spinors are easily obtained from the 
relation between spinors and orientations. Two distinct spinors (NI, VI) and (lv?., v2) in 
the same class are related to the vector f of the class by equation (3.5). The angle of 
rotation, x can be used to define a 'phase angle' within each class (in our previous 
example we had Ro given by ((, 6, f) and f = E). A spinning, orientable (classical) object 
is obviously described by such an equivalence class-where f is the spin axis-in a 
natural manner. (Note that f is a pseudo-vector in this case, cf the end of Q 3.4) 

(ZZ = 1). 

3.4. Spatial inversions o f  spinors 

We shall also say a few words about spatial inversions and reversals. By definition, we 
use equation (3.17) as the link between spinors and triads also in this case. Let (N', v') 
denote the spinor after inversion. Then 

(-(, -4, -f) = [("y + (v')2]1+ 2v'(N' * a )  + 2(" ' a)2 .  (3.32) 

Eliminating $, 4 and [from equations (3.17) and (3.32), we obtain a system of quadratic 
equations in (N, v )  and (I?, v'). The only solutions to this system are 

(N ' ,  v') = *i(N, v). (3.33) 

Both the case with the plus sign and that with the minus sign occur. By convention we 
choose plus for ordinary spinors (spinors of the first kind, cf Cartan (1966)). Since 
(N, Y) are real quantities, the spinors distinguish between right-handed and left-handed 
triads. Writing the spinor as a quaternion (equation (2.19)), v l  +N,i + N J  +N&, we 
have to introduce biquaternions to describe inversions. Interpreted as a transformation 
(see § 2), the normed spinor i(N, v )  defines an inversion combined with a rotation, i.e. a 
reversal, which would transform the reference orientation (right-handed) to the orien- 
tation associated with the spinor (left-handed). 
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In contrast to this, the information about left- and right-handedness is lost in the 
conventional, complex notation (2.16) of a spinor. After an inversion ( I )  we obtain 

(3.34) 

This spinor can also be (formally) obtained from u by a rotation through - 7 ~  around 
(equation (3.30)). Thus a complex-valued spinor would correspond both to one right- 
handed and one left-handed orientation (the sign of [ is undefined). However, 6' in 
equation (3.20) is well defined. It is a pseudovector and differs in sign from after 
inversion. Note that 28' is the general spin eigendirection in equation (3.31). 

Evidently, the spinor transformation matrix for a reversal, which is composed of the 
rotation (h, 9 )  and an inversion, equals iBA(9). For a reflection the rotation is taken 
through .rr around the normal (hit) of the plane of reflection (cf reflection of vectors), and 
the transformation matrix becomes (cf Cartan 1966, p 46) 

- 
M A  =iBA(.rr)=ih*b.  (3.35) 

We shall also consider inversions of conjugate spinors, which are of the second kind 
(Cartan 1966, p 50), i.e. transform with a minus sign in equation (3.33). This follows 
from equation (3.24) and the definition Z(u ' )  = (Zu)'. Equation (3.27) gives some 
further insight into this behaviour. It yields 

Z(u')  = (Iu) '= B-+(.rr)iu = -iu". 

Note the sign change of < due to the inversion of the associated triad. 
Cartan (1966, p 49) has adopted a conjugate spinor z2 = iCu", that differs by a factor 

i from ours. It can be interpreted in two different ways due to the ambiguity in the 
complex notation of a spinor discussed above. The factor i may arise from an inversion 
(equation (3.34)) 

Li = iB+(.rr)u = M + u  

where equation (3.35) has been used, or it may arise from a rotation (equation (3.30)) 

r.? = iB+(.rr)u =B+(.rr)Bf(-.rr)u =Bg(-.rr)u. 

In the first case, conjugation equals a reflection in the (& [) plane, and the c?njugat:d 
spinor has the associated triad (i, -9, [). In the second case the triad is (6, -<, -4'). 
Note that we have (GI1)-= $-i< = (fi")* (equation (3.26)) in both cases, which equality 
in fact constitutes the starting point of Cartan. 

The definitions of scalar and vector multiplications (equations (3.6)-(3.7)) of spinors 
have to be completed when inversions are considered. From their derivation (equation 
(3.1)) it follows that it is arbitrary whether an inversion leaves the signs of 1 and x 
unchanged or gives rise to a sign change in both. In the first case l i s  a pseudovector and 
x a scalar, and one of the spinors in equations (3.5)-(3.7) has to be complex conjugated. 
In the second case f is  a vector and x is a pseudoscalar, and equations (3.5)-(3.7) can be 
used as they stand. 

4. Spinor visualisations 

Our construction of the spinor (N, v )  in § 2 constitutes one possible way of visualising a 
spinor and its transformation under a rotation (h, 9).  The 'vector' I?' moves in an 
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elliptic orbit (figure 3) in the plane A, which is obtained by rotating the (A, I?) plar,e 
through l-(~/21 around I? (or -p/2 around n*, -27r 6 (F s 27r). The normal of A around 
which !’?’ is orbiting in the positive direction is (see figures 3 and 5) 

i = N X G  (4.1) 

x 

Figure 5. Illustration of the normal 
(6, N) plane (see equations (4.1)-(4.2) and figure 3) .  

of .4 (the plane of motion of R’), which equals the 

Inserting equation (2.14) and €? = rf? xN (equation (2.7)), we obtain (for a normed 
spinor) 

= -vB+ IN]($ XB) (4.2) 

i.e the unit normal is defined by the component v along -& and /NI orthogonally to the 
(I?, 8)  plane on the same side as rf?. 

A disadvantage with this way of visualising a spinor is that the fourth component v is 
treated separately. Instead, we shall give a better alternative, which we call the 
double-‘vector’ visualisation since it utilises two I?-‘vectors’. It retains the symmetry 
shown by the spinor as a two-component complex quantity, and gives a simple 
geometric relation between the I?-‘vectors’ in R 3  and the spinor in C2. 

Let us interpret the ( x ,  y )  plane as a complex plane C (2 = 1, y* = i). Then equation 
(2.16) shows that the projection of I? on this plane equals U -  = N, +iNy. Therefore, we 
shall give (N, v )  used so far the index -. The relation between (N- ,  Y-) and U can be 
expressed (equation (2.21)) by 

u = B ( N - , v - )  . (3  (4.3) 

In order to obtain U +  = cy+ +ip+ geometrically in as simple a manner as U -  = cy- +io-, 
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we define (N’, v’) from 

a = B ( N + ,  V+) (4.4) 

where a is the same spinor as in equation (4.3). This gives (N+, v+)= 
(a+,  -p+, -a-, p-). The projection of Nt on the (x, y )  plane accordingly is a+ -ip+ = 
U? (as we shall see later, the complex conjugate is natural here). The quantities 
(N+, v+) and (N-, v-) are related through 

N :  = N ; ,  N +  = -v- N :  = - N -  X ,  v + = N J .  (4.5) 

The geometric meaning of (N+, v+) can be obtained as follows. From equations (2.16) 

and (3.17) we see that with (-2, 9, -2). As 

before, U is associated with (i, i j ,  f), and equation (4.3) expresses that (N-, v-) defines a 
rotation that would bring (2, 9, 2)  to (i, 6, f). Analogously, equation (4.4) shows that 
(N+, v+) gives a rotation that would bring (-2, 9, -2) to (l, f j ,  f). 

Obviously, both (N+, v+) and (N-, v-) transform according to equation (2.15). The 
transformations can be illustrated as in figure 3. The ‘vectors’ move in two different 
planes A+ and A-, the normals of which can be obtained from equation (4.2). 

If we project N+ and N- on the (x, z )  plane we find the relation (from equation 

is associated with (2, 9, 2) and (3 (3 

(4.5)) 

N :  = N ; ,  N :  =-N; .  (4.6) 

Thus, the projection of N+ is obtained from that of N- by a ‘rotation’ through 77/2 
around 9 (see figure 6). This relation reduces the initial six degrees of freedom for two 

J U ;  

1 l = l )  

Figure 6 .  The relation between the double-‘vector’ visualisation (!+) and the complex 

components (:I) of a spinor. The projections of I’?’ and I’?- on the (x, z )  plane are always 

N -  

orthogonal and have equal length. Under rotational transformations the I’? ‘vectors’ move 
in planar, elliptic orbits (cf figure 3) .  
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'vectors' to four, i.e, the same number as that of a general spinor (the common scale 
factor, which changes the lengths of I? and I? and the norm of the spinor, is the fourth 
degree of freedom). 

The pair (:I) subject to the condition (4.6) will constitute our double-'vector' 

(i) The complex components of U are obtained from the projections of N +  and @ 

(ii) fl' and k;i- have direct and visually clear relations to orientations of triads. 

(iii) The additivity of spinors corresponds to additivity of (::), where common 

vector addition (parallelogram rule) is used for I?+ and N- respectively. 
(iv) fl+ and N -  transform in a simple manner under rotations, which is easy to 

visualise (figure 3). 
Note that v +  and v ~ are obtained from the y component of the respective companion 
'vector' by equation (4.5). They enter explicitly only when the normals A+ and A-  given 
by equation (4.2) are determined. 

During the projection in (i) above, the (2, 9 )  plane is interpreted as C and, as we 
have seen, Np gives U- while N +  gives UT. If we regard the plane as C* (2 = 1, $ = -i) 
during the latter projection, we obtain U +  instead. Alternatively, we may look at the 
plane from below (along -2) and interpret it as C, still obtaining U+. This view is in fact 
quite natural as seen, for example, when regarding rotations around 2. Then the 
projections P' and P- ,  which move in circular orbits under the rotation (figure 3), lie in 
the (2, 9) plane and constitute our wanted projections. Both rotate in the positive sense 
around 2. If we regard the phase of U- in C (from above) it changes in the positive sense, 
while regarding U +  in C (from below) its phase changes in the negative sense. Indeed, 
this is the normal behaviour of standard components. In this manner we may regard the 
(2, 9 )  plane as a double complex plane, one seen from above and one from below. 

Finally, we shall investigate the conjugate spinors. In our double-'vector' visualisa- 
tion of spinors, the conjugation (3.24) is, in fact, simple to perform. Equations (4.3) and 
(4.4) yield (observe that B is not changed during a conjugation) 

visualisation of a spinor (figure 6). We summarise its salient properties. 

on the ( x ,  y )  plane. 

U C = B ( N - ,  v-) (p) , u c  = B ( N + ,  .+)(-J =B(-Rf, +(A) 
Thus the conjugation simply corresponds to the operation 

on our double-'vector'. Note that the relation (4.6) is satisfied for the new 'vectors' as 
required. 

The triad (& 4, f) associated with U is obtained as usual from (2, 9, 2) by the rotation 
(K, c p - ) .  After conjugation, this rotation plays the role of (2+, cp'), i.e. ({, <, E)', the 
triad associated with U', is obtained from (-$, 9, -2) by the rotation (K, c p - ) .  Thus 
(l, 4, E)'= (-{, 4, -f) which can be written 

(l, <, E)' = As(& <, E). 
This is the analogue of equation (3.27).  
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5. Hellsten’s spinor visualisation model 

In this section we shall give the relationship between our way of regarding the spinors 
and that of Hellsten (1979). We defined a spinor from arotation (6, cp) that would take 
the reference orientation fl, to the orientation fl associated with the spinor. As is 
evident from $ 2 ,  it is sufficient to regard rotation angles -277 S cp s 277 (cf equation 
(2.13)). Let S denote a sphere of unit diameter centred at the origin (0) and take a point 
of reference (P) on S (figure 7 ) .  Under the rotation (6, cp) a mobile point originally 
located at P will be moved along a circular arc on S from P to another point Q (provided 
the rotation axis does not pass through P) .  The arc is a part of a circle (r), that equals the 
intersection between the sphere S and a plane perpendicular to f i  containing P (figure 
7). This directed arc (from P to Q) determines (6, cp), and hence the spinor (N, v )  
uniquely. Note that the complementary arc (from P to Q in the reversed rotation 
direction) gives the rotation angle cp - 27r (or cp + 277 when cp < 0) and hence the spinor 
-(& 1 ) ) .  

Figure 7. The tangent ‘vector’ tp and the ‘vector‘ 4 p  used in Hellsten’s spinor model define a 
directed arc PQ of the circle r on the sphere S. The arc is also defined from the rotation 
(2 ,  c p )  of the spinor (see text). 

We accordingly have a one-to-one correspondence between spinors and diTected 
arcs with a common starting point ( P ) ,  unless P and Q coincide (this case will be treated 
separately later). An arc can also be specified by means of a line through its end points P 
and Q, and a directed tangent to the arc at P (the direction gives the sense of rotation of 
r). In Hellsten’s model a unit ‘vector’ dp from P through Q (index P denotes that it is 
drawn from P )  and a tangent ‘vector’ fp at P are used to define the arc (figure 7) and 
hence the normed spinor. As a matter of fast, these entities are closely related to the 
spinor in complex notation, as we shall now show. 

In order to obtain the precise relationship between our previous results and 
Hellsten’s spinor model, we have to introduce a new convention for our entity (N, v). 
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Take an arbitrary spinor U and define (I?', v') from the relation 

U = B(", y')( ;) 
(cf equation (4.4)). This means that 

(I?', 22) = ( -P+,  -a+, p-,  a-).  (5.2) 

Since the spinor has the associated triad (i?, -9, -2), it follows that the rotation 

defined by (I?', Y') = (A' sin(pt/2), cos(p'/2)) would bring (2, -9, -2) to coincide with 
(8, i j ,  f), which is the triad associated with U (cf the corresponding discussion regarding 
(I?-, Y-) and (N+, v+) in § 4). Let us choose the reference point P to be the end point of 
-$2 (the 'south pole' of S ) .  Under the rotation ( A ' ,  p'), where -27r s (p's 2 ~ ,  the 
vector - .$2 would be brought to if along an arc on S ,  which by the definition above is the 
arc associated with the spinor U. Thus, Q equals the end point of if= 6' (equation 
( 3 . 2  1)). 

The tangent ;P of the arc is obviously perpendicular to f i T  and hence to I?', which are 
normals of the plane containing the arc. From equation (5.2) it follows that the 
projection of $?' on the ( x ,  y )  plane forms the angle -y+ to the negative y-axis (as before 
a+ + ip+ = p+ exp(iy+)). The same is true if we project it on the parallel tangent plane at 
P, which is spanned by iP and y*P-the basis vectors i? and y^ parallelly displaced along 
the z axis to P. Thus the angle between fP and the X P  axis also equals -y+ (figure 8), and 
if the tangent plane is interpreted as C* (or C seen from below) we have 

(3 

fa = exp(iy +). (5.3) 

If we write the spinor 

Figure 8. illustration of the relation between fir and fp .  



Spinor geometry and visualisation 1883 

the 'vector' fp accordingly gives its phase (we here assume that p+ # 0 which means that 
Q # P) .  The remaining part of U is determined by the end point Q of the arc or, 
equivalently, by dp. 

The vector OQ equals ti= 8' given explicitly by equation (3.23). A short cal- 
culation shows that the spherical polar coordinates ( r ,  4, 0)  of Q satisfy 

r = 5, 4 = Y - - Y + ,  cos 20 = p+,  sin T O  = p- .  ( 5 . 5 )  

In the (iP, gP, iP) coordinate system, Q has the polar angles (4,  0 / 2 ) p  (see figure 9). The 
unit vector d p ,  which passes through Q, obviously has the projections of lengths p+ and 
p- on the ip axis and the (iP, gP) plane respectively. Hence, we have 

1 1 1 

If this time we interpret the (iP, gP) plane as C (from above), we obtain exactly the 
quantities in the right-hand parentheses of equation (5.4). 

Figure 9. The relationship between (ip and the spin eigendirection 6' of a spinor. The 
projections of ( ip  : p +  = cos 0/2 and p -  =sin 6'/2 equal the amplitudes of the spinor 
components. 

Thus, fp and Lip together give the spinor directly. If the spinor is not normed, we 
simply muhiply Lip by the spinor norm. This is the spinor visualisation of Hellsten 
(derived differently by him). In general the 'vectors' i j p  are not additive, but their sum 
can be constructed by using the parallelogram rule combined with a transformation 
(Hellsten 1979). 

Another way to visualise the phase angle-also used by Hellsten-is to follow the 
transformation of i p  during the rotation given by (N', v'), see figure 10. The trans- 
formed vector is & ($ parallelly displaced along U' to Q). lo is a tangent vector to the 
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Figure 10. An illustration of the relation between Hellsten's spinor model and the triad 
formulation (see text). 

sphere S .  The angle between &, and the circle obviously equals that between iP and r 
(the angle is constant during the rotation) and hence is equal to y+ (as sh:wn inlfigure 
10). Thus 8 and the tangent vector &-or equivalently the vectors and &--are 
related geometrically in a fairly simple manner to the normed spinor. However, l a n d  
do not give the sign of the spinor since they leave the rotation direction of r undefined. 
Note that both in this model and in our previous method of visualising a spinor ( 5  4) it is 
necessary to determine the rotations that bring certain t;iads to coincide with (.$, t, f). 

It remains to consider the case p+ = 0. Then we have 5 = -2 and Q = P. Hence 6 lies 
in the (2, 9 )  plane and the angle between l a n d  x̂  is (p'. From equations (5.1) and (2.17) 
it follows that U- = exp(iq'/2), and equation (5.4) shows that y+ is undefined. Let us 
first choose y+ = 0. Then we have (equation (5.6)) 

which means that & lies on the line that bisects the angle rp' between &(Q = P )  and x̂ p. 

The direction of & on this line, i.e. the sign of the spinor, is not determined by l. If we 
take an arbitrary y+ instead of y+ = 0, the only thing that can be said is that the angle 
between &. and & (equation (5.3)) equals (p0'/2. However, this is sufficient in order to 
specify the spinor from & and fa. 

Finally, we turn to the transformation of an arbitrary spinor under a rotation (&, $). 
The transformation of & is very simple to determine since d, which defines Q, is a 
vector and Q is common for both entities. During the rotation Q' moves in a circle that 
is the intersection of S and a plane perpendicular to &. The 'vector' 4; crosses S at 4)' 
and has constant length. The change in the remaining phase factor exp(iy+) can be 
found by means of a geometrical construction, derived by Hellsten (1979). 
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Appendix 

Here we shall determine the projection of d (defined in 5 2, see figure 3) on the & axis: 

v = G . A .  ('41) 

G = Cln* + cz& (-42) 

where c1 and c2 are coefficients to be determined. Since d is orthogonal to E we can 
obtain a relation between c1 and c2 by multiplying equation (A2) with f Using this 
relation and the facts (from equation (2.2)) that i i * T =  1 - (n**A)2= l f 1 2  and & - f =  
- ( A  * A)(&. &), we obtain from equations (Al)-(A2) 

(A31 

Furthermore (cf equation (2.7) and figure 3), F = l? x $I = G x &. Applying this to 
equation (A2), we can compute F * 7 = (e x W Z )  - f This expression can be simplified if 
we use the relations (from equation (2.2)) ( A  X & ) * f = O  and ( & x A ) * ~ =  ( & x ~ ) * A  = 
IKlIFl, where the last equality is a consequence of equations (2.3)-(2.4) and F =  
Tsin(cp/2). The result is 

d lies in the plane A which is spanned by 2 and & (see figure 2). We can write 

Y = c2(&* & / I  ? I 2 ) .  

c2 = I m7. (A41 

Equation (2.2) yields & a  $I = 
and (2.3) 

6, and accordingly we obtain from equations (A3)-(A4) 

- - - -  
v = h * k / / h  1 / k  1 = cos hp, (A51 

because the angle between & and 6 equals q / 2 .  
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